The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the product formula on noncompact Grassmannians

Piotr GraczykPatrice Sawyer — 2013

Colloquium Mathematicae

We study the absolute continuity of the convolution δ e X * δ e Y of two orbital measures on the symmetric space SO₀(p,q)/SO(p)×SO(q), q > p. We prove sharp conditions on X,Y ∈ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions. We show that the sharp criterion developed for SO₀(p,q)/SO(p)×SO(q) also serves for the spaces SU(p,q)/S(U(p)×U(q)) and Sp(p,q)/Sp(p)×Sp(q), q > p. We moreover apply our results to the study of...

Hitting half-spaces or spheres by Ornstein-Uhlenbeck type diffusions

Tomasz ByczkowskiJakub ChorowskiPiotr GraczykJacek Małecki — 2012

Colloquium Mathematicae

The purpose of the paper is to provide a general method for computing the hitting distributions of some regular subsets D for Ornstein-Uhlenbeck type operators of the form 1/2Δ + F·∇, with F bounded and orthogonal to the boundary of D. As an important application we obtain integral representations of the Poisson kernel for a half-space and balls for hyperbolic Brownian motion and for the classical Ornstein-Uhlenbeck process. The method developed in this paper is based on stochastic calculus and...

Page 1

Download Results (CSV)