Convexités uniformes et inégalités de martingales.
An error in the paper named in the title ibid., 42-4 (1992)875-889 is corrected.
Let denote the usual Hardy space of analytic functions on the unit disc . We prove that for every function there exists a linear operator defined on which is simultaneously bounded from to and from to such that . Consequently, we get the following results : 1) is a Calderon-Mitjagin couple; 2) for any interpolation functor , we have , where denotes the closed subspace of of all functions whose Fourier coefficients vanish...
Let 1 ≤ p ≤ ∞ and let be two weights on the unit circle such that . We prove that the couple of weighted Hardy spaces is a partial retract of . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive...
Page 1