The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An error in the paper named in the title ibid., 42-4 (1992)875-889 is corrected.
Let denote the usual Hardy space of analytic functions on the unit disc . We prove that for every function there exists a linear operator defined on which is simultaneously bounded from to and from to such that . Consequently, we get the following results :
1) is a Calderon-Mitjagin couple;
2) for any interpolation functor , we have , where
denotes the closed subspace of of all functions whose Fourier coefficients vanish...
Let 1 ≤ p ≤ ∞ and let be two weights on the unit circle such that . We prove that the couple of weighted Hardy spaces is a partial retract of . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive...
Download Results (CSV)