The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Sur une inégalité fondamentale et les singularités d’une fonction analytique définie par un élément L C -dirichlétien

Maurice BlambertR. Parvatham — 1983

Annales de l'institut Fourier

Utilisant une fonction entière g B [ 1 , T ] et les propriétés relatives à son diagramme indicateur et à son diagramme conjugué, on établit une inégalité fondamentale liée au terme général d’un élément L C -dirichlétien Σ P n ( s ) exp ( - λ n / s ) où les λ n sont complexes et où les P n ( s ) sont des polynômes tayloriens. Ensuite on établit des propriétés de convergence et on utilise l’inégalité fondamentale pour obtenir certaines propriétés liées au prolongement analytique de la fonction définie par l’élément L C -dirichlétien dans un ouvert connexe...

Ultraconvergence et singularités pour une classe de séries d'exponentielles

Maurice BlambertR. Parvatham — 1979

Annales de l'institut Fourier

Localisation des singularités des fonctions analytiques définies par des séries du type Σ P n ( s ) exp ( - s λ n , où les λ n sont complexes et où les P n ( s ) sont des polynômes tayloriens, en utilisant des propriétés obtenues selon deux méthodes originellement dues l’une à B. Lepson pour les séries d’exponentielles à coefficients polynomiaux et dont la suite des exposants est une D -suite et l’autre à G. L. Luntz pour les séries de Taylor-Dirichlet. Le résultat fondamental utilise un théorème de A. F. Leont’ev-G. P. Lapin...

Convolution theorems for starlike and convex functions in the unit disc

M. AnbuduraiR. ParvathamS. PonnusamyV. Singh — 2004

Annales Polonici Mathematici

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number...

Page 1

Download Results (CSV)