The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a prime ring of char with a nonzero derivation and let be its noncentral Lie ideal. If for some fixed integers , for all , then satisfies , the standard identity in four variables.
We consider all the non-metabelian groups of order that have exponent either or and deduce the unit group of semisimple group algebra . Here, denotes the power of a prime, i.e., for prime and a positive integer . Up to isomorphism, there are groups of order that have exponent either or . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order that are a direct product of two nontrivial...
We give the characterization of the unit group of , where is a finite field with elements for prime and denotes the special linear group of matrices having determinant over the cyclic group .
We study McCoy’s theorem to the skew Hurwitz series ring for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring satisfies McCoy’s theorem of skew Hurwitz series.
We characterize the unit group for the group algebras of non-metabelian groups of order 128 over the finite fields whose characteristic does not divide the order of the group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are non-metabelian. We determine the Wedderburn decomposition of the group algebras of these non-metabelian groups and subsequently characterize their unit groups.
Download Results (CSV)