The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José BonetReinhold Meise — 2008

Studia Mathematica

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

Extension and lacunas of solutions of linear partial differential equations

Uwe FrankenReinhold Meise — 1996

Annales de l'institut Fourier

Let K Q be compact, convex sets in n with K and let P ( D ) be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of P ( D ) in the space ( K ) of all C -functions on K extends to a zero solution in ( Q ) resp. in ( n ) . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of P in n and in terms of for P ( D ) with lacunas.

Page 1 Next

Download Results (CSV)