Note sur le calcul de la répartition des puissances souscrites entre tarif d'appoint et tarif de secours
J. Maher a montré qu’une variété hyperbolique de dimension compacte sans bord, connexe et orientable fibre virtuellement sur le cercle si et seulement si elle admet une famille infinie de revêtements finis de genre de Heegaard borné. En s’appuyant sur la démonstration de Maher, cet article présente un théorème donnant une condition suffisante pour qu’un revêtement fini d’une variété hyperbolique compacte de dimension contienne une fibre virtuelle, qui s’exprime en fonction du degré du revêtement...
This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal error estimate and some computational tests including a comparison with some other strategies.
The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...
The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...
This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.
The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...
Page 1