Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Gradients de Heegaard sous-logarithmiques d’une variété hyperbolique de dimension trois et fibres virtuelles

Claire Renard

Séminaire de théorie spectrale et géométrie

J. Maher a montré qu’une variété hyperbolique de dimension 3 compacte sans bord, connexe et orientable fibre virtuellement sur le cercle si et seulement si elle admet une famille infinie de revêtements finis de genre de Heegaard borné. En s’appuyant sur la démonstration de Maher, cet article présente un théorème donnant une condition suffisante pour qu’un revêtement fini d’une variété hyperbolique compacte de dimension 3 contienne une fibre virtuelle, qui s’exprime en fonction du degré d du revêtement...

A Reduced Basis Enrichment for the eXtended Finite Element Method

E. ChahineP. LabordeY. Renard — 2009

Mathematical Modelling of Natural Phenomena

This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal error estimate and some computational tests including a comparison with some other strategies.

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber AmdouniPatrick HildVanessa LlerasMaher MoakherYves Renard — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber AmdouniPatrick HildVanessa LlerasMaher MoakherYves Renard — 2012

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...

Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary

Farshid DabaghiAdrien PetrovJérôme PousinYves Renard — 2014

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber AmdouniPatrick HildVanessa LlerasMaher MoakherYves Renard — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed...

Page 1

Download Results (CSV)