Some remarks on the random walk on finite groups
We prove density modulo of the sets of the form where is a pair of rationally independent algebraic integers of degree satisfying some additional assumptions, and is any sequence of real numbers.
We obtain upper and lower estimates for the Green function for a second order noncoercive differential operator on a homogeneous manifold of negative curvature.
In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.
Let be the quotient group of the -adele ring of an algebraic number field by the discrete group of -integers. Given a probability measure on and an endomorphism of , we consider the relation between uniform distribution of the sequence for -almost all and the behavior of relative to the translations by some rational subgroups of . The main result of this note is an extension of the corresponding result for the -dimensional torus due to B. Host.
We obtain an estimate for the Poisson kernel for the class of second order left-invariant differential operators on higher rank NA groups.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to , k>1. We consider a class of second order left-invariant differential operators on S of the form , where , and for each is left-invariant second order differential operator on N and , where Δ is the usual Laplacian on . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively) we obtain an...
Let Γ be a subsemigroup of G = GL(d,ℝ), d > 1. We assume that the action of Γ on is strongly irreducible and that Γ contains a proximal and quasi-expanding element. We describe contraction properties of the dynamics of Γ on at infinity. This amounts to the consideration of the action of Γ on some compact homogeneous spaces of G, which are extensions of the projective space . In the case where Γ is a subsemigroup of GL(d,ℝ) ∩ M(d,ℤ) and Γ has the above properties, we deduce that the Γ-orbits...
In this paper we treat noncoercive operators on simply connected manifolds of negative curvature.
Page 1