The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions

Sahbi Boussandel — 2018

Applications of Mathematics

The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet p -Laplace operator.

Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow

Sahbi BoussandelRalph ChillEva Fašangová — 2012

Czechoslovak Mathematical Journal

Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and L 2 -maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented...

Page 1

Download Results (CSV)