The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime -modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
Let be a lattice with the greatest element . Following the concept of generalized small subfilter, we define -supplemented filters and investigate the basic properties and possible structures of these filters.
Let be a commutative ring with non-zero identity. Various properties of multiplication modules are considered. We generalize Ohm’s properties for submodules of a finitely generated faithful multiplication -module (see [8], [12] and [3]).
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication -modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
Download Results (CSV)