The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Estimates for singular integrals and extrapolation

Shuichi Sato — 2009

Studia Mathematica

We study singular integrals with rough kernels, which belong to a class of singular Radon transforms. We prove certain estimates for the singular integrals that are useful in an extrapolation argument. As an application, we prove L p boundedness of the singular integrals under a certain sharp size condition on their kernels.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato — 2019

Czechoslovak Mathematical Journal

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Page 1

Download Results (CSV)