We study the free complexification operation for compact quantum groups, . We prove that, with suitable definitions, this induces a one-to-one correspondence between free orthogonal quantum groups of infinite level, and free unitary quantum groups satisfying .
This is a presentation of recent work on quantum permutation groups, complex Hadamard matrices, and the connections between them. A long list of problems is included. We include as well some conjectural statements about matrix models.
Associated to an Hadamard matrix is the spectral measure μ ∈ [0,N] of the corresponding Hopf image algebra, A = C(G) with . We study a certain family of discrete measures , coming from the idempotent state theory of G, which converge in Cesàro limit to μ. Our main result is a duality formula of type , where are the truncations of the spectral measures μ,ν associated to . We also prove, using these truncations , that for any deformed Fourier matrix we have μ = ν.
The half-liberated orthogonal group appears as intermediate quantum group between the orthogonal group , and its free version . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between and , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...
We consider circulant graphs having vertices, with prime. To any such graph we associate a certain number , that we call type of the graph. We prove that for the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.
This is a presentation of recent work on quantum permutation groups. Contains: a short introduction to operator algebras and Hopf algebras; quantum permutation groups, and their basic properties; diagrams, integration formulae, asymptotic laws, matrix models; the hyperoctahedral quantum group, free wreath products, quantum automorphism groups of finite graphs, graphs having no quantum symmetry; complex Hadamard matrices, cocycle twists of the symmetric group, quantum groups acting on 4 points; remarks...
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A → Mₙ(ℂ) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A' must be the convolution Cesàro limit of the linear functional φ = tr ∘ π. We then discuss some consequences of this result, notably to inner linearity questions.
We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for the quantity satisfies , with equality if and only if is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of , (2) the study of the critical points of , and (3) the computation of the moments of . We explore here these questions,...
We study the discrete groups whose duals embed into a given compact quantum group, . In the matrix case the embedding condition is equivalent to having a quotient map , where is a certain family of groups associated to . We develop here a number of techniques for computing , partly inspired from Bichon’s classification of group dual subgroups . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian...
Download Results (CSV)