The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Flots d'Anosov sur les variétés graphées au sens de Waldhausen

Thierry Barbot — 1996

Annales de l'institut Fourier

Cet article est consacré à l’étude d’une large classe de flots d’Anosov sur les variétés graphées. Nous établissons un résultat général à propos des plongements de variétés de Seifert dans les variétés de dimension 3 admettant un flot d’Anosov produit, généralisant ainsi un résultat de E. Ghys. Nous montrons que, à isotopie près, la restriction du feuilletage unidimensionnel défini par le flot à l’image de ce plongement est topologiquement conjugué à un morceau de flot géodésique privé d’un nombre...

Feuilletages transversalement projectifs sur les variétés de Seifert

Thierry Barbot — 2003

Annales de l’institut Fourier

Soit M une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit Φ un feuilletage de dimension 1 sur M , muni d’une structure projective réelle transverse. On suppose que Φ satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de Φ dans le revêtement universel de M est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, Φ est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique...

Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space

Thierry BarbotFrançois BéguinAbdelghani Zeghib — 2011

Annales de l’institut Fourier

We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt,...

Page 1

Download Results (CSV)