We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.
This paper is devoted to the study of the regularity of solutions to some systems of reaction–diffusion equations. In particular, we show the global boundedness and regularity of the solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set of singularities in higher dimensions. Our approach is inspired by De Giorgi’s method for elliptic regularity with rough coefficients. The proof uses the specific structure of the system to be considered and is not a mere...
This paper is devoted to general parabolic equations involving 0 and 1 order terms, in linear and nonlinear expressions, while the data only belong to L. Existence and entropic-uniqueness of solutions are proved.
We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients.
Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow
and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation.
We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.
We investigate different asymptotic regimes
for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
On présente quelques problèmes et résultats de type limites hydrodynamiques pour des modèles couplés fluide/cinétique décrivant l'interaction de particules avec un fluide en mouvement.
The modelling and the numerical resolution of the electrical charging of a
spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions.
We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.
In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime.
Boundary layers are generated from the fact that the incoming kinetic flux might be far
from the thermodynamical equilibrium. In [2], the authors propose a method to compute
numerically the boundary conditions in the hydrodynamic limit relying on an analysis of
the boundary layers....
Download Results (CSV)