We consider an optimal control problem describing a laser-induced population transfer on a -level quantum system. For a convex cost depending only on the moduli of controls (i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for and ): instead of looking...
We study the Laplace-Beltrami operator of generalized Riemannian structures on orientable surfaces for which a local orthonormal frame is given by a pair of vector fields that can become collinear.
Under the assumption that the structure is 2-step Lie bracket generating, we prove that the Laplace-Beltrami operator is essentially self-adjoint and has discrete spectrum. As a consequence, a quantum particle cannot cross the singular set (i.e., the set where the vector fields become collinear)...
Let and be two smooth vector fields on a two-dimensional manifold . If and are everywhere linearly independent, then they define a Riemannian metric on (the metric for which they are orthonormal) and they give to the structure of metric space. If and become linearly dependent somewhere on , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way...
We consider an optimal control problem describing a
laser-induced
population transfer on a -level quantum system. For a convex cost depending only on the moduli
of controls ( the lasers intensities),
we prove that there always exists a minimizer in
resonance. This permits to justify
some strategies used in experimental physics. It is also quite
important
because it permits to reduce remarkably
the complexity of the problem (and extend some of our previous
results
for and ): instead of looking...
Fix two points and two directions (without orientation) of the velocities in these points. In this paper we are interested to the problem of minimizing the cost
along all smooth curves starting from x with direction η and ending in with direction . Here g is the standard Riemannian metric on S
2 and...
Soient et deux champs de vecteurs lisses sur globalement asymptotiquement stables à l’origine. Nous donnons des conditions nécessaires et des conditions suffisantes sur la topologie de l’ensemble des points où et sont parallèles pour pouvoir assurer la stabilité asymptotique globale du système contrôlé non linéaire non autonome
où le contrôle est une fonction mesurable arbitraire de dans . Les conditions données ne nécessitent aucune intégration ou construction...
We consider the problem of minimizing ∫ 0 ℓ ξ 2 + K 2 ( s ) d s for a planar curve having fixed initial and final positions and directions. The total length is free. Here is the arclength parameter, () is the curvature of the curve and > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no...
Nous établissons l’asymptotique en temps petit du noyau de la chaleur au lieu de coupure dans les situations génériques, en géométrie riemannienne en dimension inférieure ou égale à 5, en géométrie sous-riemannienne de contact en dimension 3 ou de quasi-contact en dimension 4. La preuve nous permet de montrer qu’en dimension inférieure ou égale à 5 les seules singularités d’une application exponentielle riemannienne générique qui peuvent apparaître le long d’une géodésique minimisante sont et...
Download Results (CSV)