For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which and . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...
This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2 was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.
In this paper we characterize manifolds (topological or smooth, compact or not, with or without boundary) which admit flows having a dense orbit (such manifolds and flows are called transitive) thus fully answering some questions by Smith and Thomas. Name
An explicit topological description of ω-limit sets of continuous flows on compact surfaces without boundary is given. Some of the results can be extended to manifolds of larger dimensions.
In 1992 Agronsky and Ceder proved that any finite collection of non-degenerate Peano continua in the unit square is an ω-limit set for a continuous map. We improve this result by showing that it is valid, with natural restrictions, for the triangular maps (x,y) ↦ (f(x),g(x,y)) of the square. For example, we show that a non-trivial Peano continuum C ⊂ I² is an orbit-enclosing ω-limit set of a triangular map if and only if it has a projection property. If C is a finite union of Peano continua then,...
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if is a periodic orbit of a continuous map f then there is a union set of some periodic orbits of f such that for any i.
In this paper we study the commutativity property for topological sequence entropy. We prove that if is a compact metric space and are continuous maps then for every increasing sequence if , and construct a counterexample for the general case. In the interim, we also show that the equality is true if but does not necessarily hold if is an arbitrary compact metric space.
Let denote the family of continuous maps from an interval into
itself such that (1) ; (2) they consist of two monotone pieces; and
(3) they have periodic points of periods exactly all powers of . The main aim of this
paper is to compute explicitly the topological sequence entropy of any map respect to the sequence .
Download Results (CSV)