The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Defining complete and observable chaos

Víctor Jiménez López — 1996

Annales Polonici Mathematici

For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which l i m i n f n | f n ( x ) - f n ( y ) | = 0 and l i m s u p n | f n ( x ) - f n ( y ) | > 0 . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...

Maximal scrambled sets for simple chaotic functions.

Víctor Jiménez López — 1996

Publicacions Matemàtiques

This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2 was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.

Transitive flows on manifolds.

Víctor Jiménez LópezGabriel Soler López — 2004

Revista Matemática Iberoamericana

In this paper we characterize manifolds (topological or smooth, compact or not, with or without boundary) which admit flows having a dense orbit (such manifolds and flows are called transitive) thus fully answering some questions by Smith and Thomas. Name

ω-Limit sets for triangular mappings

Victor Jiménez LópezJaroslav Smítal — 2001

Fundamenta Mathematicae

In 1992 Agronsky and Ceder proved that any finite collection of non-degenerate Peano continua in the unit square is an ω-limit set for a continuous map. We improve this result by showing that it is valid, with natural restrictions, for the triangular maps (x,y) ↦ (f(x),g(x,y)) of the square. For example, we show that a non-trivial Peano continuum C ⊂ I² is an orbit-enclosing ω-limit set of a triangular map if and only if it has a projection property. If C is a finite union of Peano continua then,...

All solenoids of piecewise smooth maps are period doubling

Lluís AlsedàVíctor Jiménez LópezL’ubomír Snoha — 1998

Fundamenta Mathematicae

We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if p 1 < . . . < p n is a periodic orbit of a continuous map f then there is a union set q 1 , . . . , q n - 1 of some periodic orbits of f such that p i < q i < p i + 1 for any i.

Commutativity and non-commutativity of topological sequence entropy

Francisco BalibreaJose Salvador Cánovas PeñaVíctor Jiménez López — 1999

Annales de l'institut Fourier

In this paper we study the commutativity property for topological sequence entropy. We prove that if X is a compact metric space and f , g : X X are continuous maps then h A ( f g ) = h A ( g f ) for every increasing sequence A if X = [ 0 , 1 ] , and construct a counterexample for the general case. In the interim, we also show that the equality h A ( f ) = h A ( f | n 0 f n ( X ) ) is true if X = [ 0 , 1 ] but does not necessarily hold if X is an arbitrary compact metric space.

Computing explicitly topological sequence entropy: the unimodal case

Victor Jiménez LópezJose Salvador Cánovas Peña — 2002

Annales de l’institut Fourier

Let W ( I ) denote the family of continuous maps f from an interval I = [ a , b ] into itself such that (1) f ( a ) = f ( b ) { a , b } ; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of 2 . The main aim of this paper is to compute explicitly the topological sequence entropy h D ( f ) of any map f W ( I ) respect to the sequence D = ( 2 m - 1 ) m = 1 .

Page 1

Download Results (CSV)