The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 49

Showing per page

Order by Relevance | Title | Year of publication

Nil, nilpotent and PI-algebras

Vladimír Müller — 1994

Banach Center Publications

The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial identity) play an important role in ring theory (see e.g. [8], [11], [20]). Banach algebras with these properties have been studied considerably less and the existing results are scattered in the literature. The only exception is the work of Krupnik [13], where the Gelfand theory of Banach PI-algebras is presented. However, even this work has not get so much attention as it deserves. The present paper...

Axiomatic theory of spectrum III: semiregularities

Vladimír Müller — 2000

Studia Mathematica

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).

The joint essential numerical range, compact perturbations, and the Olsen problem

Vladimír Müller — 2010

Studia Mathematica

Let T₁,...,Tₙ be bounded linear operators on a complex Hilbert space H. Then there are compact operators K₁,...,Kₙ ∈ B(H) such that the closure of the joint numerical range of the n-tuple (T₁-K₁,...,Tₙ-Kₙ) equals the joint essential numerical range of (T₁,...,Tₙ). This generalizes the corresponding result for n = 1. We also show that if S ∈ B(H) and n ∈ ℕ then there exists a compact operator K ∈ B(H) such that | | ( S - K ) | | = | | S | | e . This generalizes results of C. L. Olsen.

Page 1 Next

Download Results (CSV)