The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Pál Erdös trochu inak

Vojtech Bálint — 2020

Pokroky matematiky, fyziky a astronomie

Na veľmi stručnom pozadí životopisu priblížime niektoré charakteristické vlastnosti Pála Erdösa: neuveriteľnú pamäť, rýchlosť myslenia, láskavosť.

Otto Varga - maďarsko-německý matematik a Praha

Vojtech BálintMartina Bečvářová — 2020

Pokroky matematiky, fyziky a astronomie

Na základě studia archivních materiálů dochovaných v České republice, na Slovensku, v Německu a v Maďarsku připomeneme zajímavé a u nás skoro zapomenuté osudy Otty Vargy, jehož kariéra se zrodila v meziválečném čase na Německé univerzitě v Praze a vyvrcholila po druhé světové válce v Maďarsku.

Radius-invariant graphs

Vojtech BálintOndrej Vacek — 2004

Mathematica Bohemica

The eccentricity e ( v ) of a vertex v is defined as the distance to a farthest vertex from v . The radius of a graph G is defined as a r ( G ) = min u V ( G ) { e ( u ) } . A graph G is radius-edge-invariant if r ( G - e ) = r ( G ) for every e E ( G ) , radius-vertex-invariant if r ( G - v ) = r ( G ) for every v V ( G ) and radius-adding-invariant if r ( G + e ) = r ( G ) for every e E ( G ¯ ) . Such classes of graphs are studied in this paper.

Page 1

Download Results (CSV)