On stability of CR-mappings between nilpotent Lie groups of step two.
We construct the CR invariant canonical contact form on scalar positive spherical CR manifold , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold , where is a convex cocompact subgroup of and is the discontinuity domain of . This contact form can be used to prove that is scalar positive (respectively, scalar negative, or scalar vanishing) if and...
By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.
We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.
We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a selection in the Fourier space. This method is applicable to other nonlinear equations.
The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
Cette étude s'inscrit dans un prolongement algorithmique d'un travail de Bruno Leclerc, publié dans cette revue, qui discute de la taille maximum d'une antichaîne dans un produit direct P d'ordres totaux. On y présente un algorithme de partitionnement de P en un nombre minimum de chaînes. Enfin, on décrit brièvement une application à l'extraction de connaissance.
Let be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence of integers, called the digit sequence of x, such that . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set for any infinite subset B ⊂ ℕ, a question posed by Hirst for continued...
We show that Martin’s conjecture on Π¹₁ functions uniformly -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant functions is equivalent over ZFC to -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.
Page 1 Next