Currently displaying 1 – 20 of 20

Showing per page

Order by Relevance | Title | Year of publication

Canonical contact forms on spherical CR manifolds

Wei Wang — 2003

Journal of the European Mathematical Society

We construct the CR invariant canonical contact form can ( J ) on scalar positive spherical CR manifold ( M , J ) , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold Ω ( Γ ) / Γ , where Γ is a convex cocompact subgroup of Aut C R S 2 n + 1 = P U ( n + 1 , 1 ) and Ω ( Γ ) is the discontinuity domain of Γ . This contact form can be used to prove that Ω ( Γ ) / Γ is scalar positive (respectively, scalar negative, or scalar vanishing) if and...

Parametric representations of BiHom-Hopf algebras

Xiaohui ZhangWei WangJuzhen Chen — 2024

Czechoslovak Mathematical Journal

The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new n -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.

Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in 𝐙 d

Wei-Min Wang — 1999

Journées équations aux dérivées partielles

By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.

Fonction de Correlation pour des Mesures Complexes

Wei Min Wang

Séminaire Équations aux dérivées partielles

We study a class of holomorphic complex measures, which are close in an appropriate sense to a complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study of a certain class of random Schrödinger operators, for which we show that the expectation value of the Green’s function decays exponentially.

Un algorithme de partition d'un produit direct d'ordres totaux en un nombre minimum de chaînes

Emmanuel PichonPhilippe LencaFabrice GuilletJian Wei Wang — 1994

Mathématiques et Sciences Humaines

Cette étude s'inscrit dans un prolongement algorithmique d'un travail de Bruno Leclerc, publié dans cette revue, qui discute de la taille maximum d'une antichaîne dans un produit direct P d'ordres totaux. On y présente un algorithme de partitionnement de P en un nombre minimum de chaînes. Enfin, on décrit brièvement une application à l'extraction de connaissance.

The growth speed of digits in infinite iterated function systems

Chun-Yun CaoBao-Wei WangJun Wu — 2013

Studia Mathematica

Let f n 1 be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence a ( x ) n 1 of integers, called the digit sequence of x, such that x = l i m n f a ( x ) f a ( x ) ( 1 ) . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set x Λ : a ( x ) B ( n 1 ) , l i m n a ( x ) = for any infinite subset B ⊂ ℕ, a question posed by Hirst for continued...

The strength of the projective Martin conjecture

C. T. ChongWei WangLiang Yu — 2010

Fundamenta Mathematicae

We show that Martin’s conjecture on Π¹₁ functions uniformly T -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π ¹ 2 n + 1 functions is equivalent over ZFC to Σ ¹ 2 n + 2 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.

Page 1 Next

Download Results (CSV)