This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.
The arithmetic function ρ(n) counts the number of ways to write a positive integer n as a difference of two squares. Its average size is described by the Dirichlet summatory function Σn≤x ρ(n), and in particular by the error term R(x) in the corresponding asymptotics. This article provides a sharp lower bound as well as two mean-square results for R(x), which illustrates the close connection between ρ(n) and the number-of-divisors function d(n).
The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.
The paper deals with asymptotics for a class of arithmetic functions which describe the value distribution of the greatest-common-divisor function. Typically, they are generated by a Dirichlet series whose analytic behavior is determined by the factor ζ2(s)ζ(2s − 1). Furthermore, multivariate generalizations are considered.
Download Results (CSV)