The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In Example 1, we describe a subset X of the plane and a function on X which has a -extension to the whole for each finite, but has no -extension to . In Example 2, we construct a similar example of a subanalytic subset of ; much more sophisticated than the first one. The dimensions given here are smallest possible.
A continuous linear extension operator, different from Whitney’s, for -Whitney fields (p finite) on a closed o-minimal subset of is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.
A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable 𝓒¹-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any...
A correct formulation of the Lion-Rolin Preparation Theorem for logarithmic-subanalytic functions (LA-functions) is given.
For any subanalytic -Whitney field (k finite), we construct its subanalytic -extension to . Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.
This is a generalized and improved version of our earlier article [Studia Math. 124 (1997)] on the Whitney extension theorem for subanalytic -Whitney fields (with p finite). In this new version we consider Whitney fields definable in an arbitrary o-minimal structure on any real closed field R and obtain an extension which is a -function definable in the same o-minimal structure. The Whitney fields that we consider are defined on any locally closed definable subset of Rⁿ. In such a way, a local...
A local-global version of the implicit function theorem in o-minimal structures and a generalization of the theorem of Wilkie on covering open sets by open cells are proven.
Download Results (CSV)