Let be a mixed graph. The eigenvalues and eigenvectors of are respectively defined to be those of its Laplacian matrix. If is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of corresponding to its second smallest eigenvalue (also called the algebraic connectivity of ). For being a general mixed graph with...
This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
The spectral radius of a graph is defined by that of its unoriented Laplacian matrix. In this paper, we determine the unicyclic graphs respectively with the third and the fourth largest spectral radius among all unicyclic graphs of given order.
Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell et al. have identified a subclass within the connected graphs of order n and size m in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size n/2 ). In this paper we discuss the minimizing graphs of a special class of graphs of order n whose complements are connected and contains...
In this paper we investigate the hypergraphs whose spectral radii attain the maximum among all uniform hypergraphs with given number of edges. In particular we characterize the hypergraph(s) with maximum spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth, linear or power bicyclic hypergraphs, respectively.
Download Results (CSV)