Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster 𝔇 -parallel structure Jacobi operator

Eunmi PakYoung Suh — 2014

Open Mathematics

Regarding the generalized Tanaka-Webster connection, we considered a new notion of 𝔇 -parallel structure Jacobi operator for a real hypersurface in a complex two-plane Grassmannian G 2(ℂm+2) and proved that a real hypersurface in G 2(ℂm+2) with generalized Tanaka-Webster 𝔇 -parallel structure Jacobi operator is locally congruent to an open part of a tube around a totally geodesic quaternionic projective space ℍP n in G 2(ℂm+2), where m = 2n.

Real hypersurfaces in a complex projective space with pseudo- 𝔻 -parallel structure Jacobi operator

Hyunjin LeeJuan de Dios PérezYoung Jin Suh — 2010

Czechoslovak Mathematical Journal

We introduce the new notion of pseudo- 𝔻 -parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.

Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians

Eunmi PakJuan de Dios PérezYoung Jin Suh — 2015

Czechoslovak Mathematical Journal

We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian G 2 ( m + 2 ) . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in G 2 ( m + 2 ) satisfying such conditions.

Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II

Hyunjin LeeSeonhui KimYoung Jin Suh — 2014

Czechoslovak Mathematical Journal

Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces M of Type ( A ) in complex two plane Grassmannians G 2 ( m + 2 ) with a commuting condition between the shape operator A and the structure tensors φ and φ 1 for M in G 2 ( m + 2 ) . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator A and a new operator φ φ 1 induced by two structure tensors φ and φ 1 . That is, this commuting shape operator is given by φ φ 1 A = A φ φ 1 . Using this condition, we prove that...

Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition

Hyunjin LeeSeonhui KimYoung Jin Suh — 2012

Czechoslovak Mathematical Journal

In this paper, first we introduce a new notion of commuting condition that φ φ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 ( m + 2 ) . Suprisingly, real hypersurfaces of type ( A ) , that is, a tube over a totally geodesic G 2 ( m + 1 ) in complex two plane Grassmannians G 2 ( m + 2 ) satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in G 2 ( m + 2 ) satisfying the commuting condition. Finally we get a characterization of Type ( A ) in terms of such commuting...

Real hypersurfaces in complex space forms concerned with the local symmetry

Seon Mi LyuJuan de Dios PérezYoung Jin Suh — 2007

Czechoslovak Mathematical Journal

This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface M in complex space form M m ( 4 ϵ ) . In the second, we give a complete classification of real hypersurfaces in M m ( 4 ϵ ) which satisfy the above geometric facts.

Page 1

Download Results (CSV)