Multiplicité un pour les espaces symétriques exponentiels
Every bounded convex open set Ω of is endowed with its Hilbert metric . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C strictly convex function whose derivative is quasisymmetric.
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
Let be a semisimple algebraic Lie group and a reductive subgroup. We find geometrically the best even integer for which the representation of in is almost . As an application, we give a criterion which detects whether this representation is tempered.
Page 1