On the theory of cubic residues and nonresidues
Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.
Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for and the criterion for (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and , and b ≢...
Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p), and , where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning , where m is an integer not divisible by p.
Let be the Ramsey number of the two graphs and . For let be the double star given by , and . We determine under certain conditions. For let , and , where , , and . We also obtain explicit formulas for , , , and , where , is the path on vertices and is the unique tree with vertices and maximal degree .
We systematically investigate the expressions and congruences for both a one-parameter family as well as a two-parameter family of sequences.
Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with , and . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.
Page 1