Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension .
Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with and are of type and give a class of Novikov superalgebras of type with .
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions and , based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive -dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a -dimensional reductive -fold symmetric pseudo-Riemannian manifold must be globally symmetric.
-manifold algebras are focused on the algebraic properties of the tangent sheaf of -manifolds. The local classification of 3-dimensional -manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional -manifold algebras over the complex field .
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.
Download Results (CSV)