Asymptotic behavior of solutions for some nonlinear partial differential equations on unbounded domains.
In this paper we give some existence and nonexistence results of non trivial solutions of nonlinear elliptic systems involving the p-Laplacian.
In this paper we consider a nonlinear parabolic equation of the following type: (P) ∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u) with Dirichlet boundary conditions and initial data in the case when 1 < p < 2. We construct supersolutions of (P), and by use of them, we prove that for tn → +∞, the solution of (P) converges to some solution of the elliptic equation associated with (P).
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
Page 1