Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Sopra un teorema d'intercambio

Susana Elena Trione — 1975

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Let α , β 𝐂 , α + β = n + 2 h , α n + 2 h , β n + 2 h , h = 0 , 1 , . We prove under these conditions, the formula of interchange of the Fourier transformation of convolution of P f ( H α ( P ± i 0 , n ) H β ( P ± i 0 , n ) ) into the product of their Fourier trasforms: { P f ( H α ( P ± i 0 , n ) H β ( P ± i 0 , n ) ) } Λ = { H α ( P ± i 0 , n ) } Λ { H β ( P ± i 0 , n ) } Λ (see, for the definitions of these notations, formulae (1), (1') and Theorem). As an immediate consequence of formula (2) we obtain { P f ( ( P ± i 0 , n ) 1 2 t ( P ± i 0 , n ) 1 2 s ) } Λ = { ( P ± i 0 , n ) 1 2 t } Λ { ( P ± i 0 , n ) 1 2 s } Λ , where t + s = - n + 2 h , t 2 h , s 2 h , h = 0 , 1 , . It may be observed that, in the particular case p = n , q = 0 , the distributions H α ( P ± i 0 , n ) turn out to be the elliptic M. Riesz kernel of which they are "causal" ("anticausal") analogues; and...

Sopra alcune convoluzioni divergenti

Susana Elena Trione — 1974

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

We give a sense to certain divergent convolutions of the form ( P ± i 0 ) λ ( P ± i 0 ) μ (see, for the definition of these notations, formulae (2), (4), (5)). As an application of our formulae we obtain the explicit value of a constant which appears in a formula of Fuglede (see [1], p. 7, Lemma 3.1). We observe that many of the "divergences" appearing in quantum field theory are precisely divergent convolutions of the form ( P ± i 0 ) λ ( P ± i 0 ) μ (see [2], pp. 151-183).

Sopra la trasformata di Hankel distribuzionale

Susana Elena Trione — 1974

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

We evaluate (formula (2,2)) the Hankel transform of the distribution δ a ( m ) ( t ) . As a consequence of (2,2) we obtain lim A Ω n ( 2 π ) n / 2 A n / 2 J n / 2 ( A t ) = δ , where Ω n designates the area of the unit sphere in R n . We also give a direct proof of this formula, which plays a role in the theory of the spherical summability of Fourier integrals.

Generalizzazione di una formola del Källen

Susana Elena Trione — 1972

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Let n and k be fixed integers; n even 4 ; 1 k n - 2 2 . Let f ( t ) , 0 t < , be differentiable and such that 0 | f ( t ) | t ( n - 2 k ) / 2 𝑑 t < . We prove that, under these conditions, the integral equation (2) admits the solution (4). In the particular case n = 4 , k = 1 (which is important in the quantum theory of fields) the reciprocal formulae (2) and (4) have already been obtained (on the basis of heuristical considerations) by Källen [1].

Soluzioni elementari causali dell'operatore di Klein—Gordon iterato

Susana Elena Trione — 1972

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

The distributions G α { P ± i 0 , m , n } (formula (1)) share many properties with the Bessel kernel, of which they are "causal" ("anticausal") analogues. In particular (Theorem 1), G α G - 2 k = G α - 2 k , Λ α 𝐂 , Λ k = 0 , 1 , 2 , . The essential tool for the proof of this formula is the multiplication formula (4), namely { m 2 + Q ( y ) i 0 } α { m 2 + Q ( y ) i 0 } β = { m 2 + Q ( y ) i 0 } α + β , which is valid for every α , β 𝐂 . It follows from Theorem (1) that G 2 k { P ± i 0 , m , n } , is, for n 2 , k = 1 , 2 , , a causal (anticausal) elementary solution of the n-dimensional Klein-Gordon operator, iterated k times (Theorem 2). The particular case n = 4 , k = 1 is important in the...

Page 1

Download Results (CSV)