The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Computing limit linear series with infinitesimal methods”

Obstructions to deforming curves on a 3 -fold, II: Deformations of degenerate curves on a del Pezzo 3 -fold

Hirokazu Nasu (2010)

Annales de l’institut Fourier

Similarity:

We study the Hilbert scheme Hilb s c V of smooth connected curves on a smooth del Pezzo 3 -fold V . We prove that any degenerate curve C , any curve C contained in a smooth hyperplane section S of V , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) χ ( V , C ( S ) ) 1 and (ii) for every line on S such that C = , the normal bundle N / V is trivial (  N / V 𝒪 1 2 ). As a consequence, we prove an analogue (for Hilb s c V ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...

The Nash problem of arcs and the rational double points D n

Camille Plénat (2008)

Annales de l’institut Fourier

Similarity:

This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface U with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points D n ( n 4 ).

Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino, Todor Gramchev (2008)

Annales de l’institut Fourier

Similarity:

We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators...

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier

Similarity:

Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.