The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A classification of the topological types of 𝐑 2 -actions on closed orientable 3-manifolds”

Orbit Structure of certain 2 -actions on solid torus

C. Maquera, L. F. Martins (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this paper we describe the orbit structure of   C 2 -actions of   2   on the solid torus   S 1 × D 2   having   S 1 × { 0 }   and   S 1 × D 2   as the only compact orbits, and   S 1 × { 0 }   as singular set.

Foliations of M 3 defined by 2 -actions

Jose Luis Arraut, Marcos Craizer (1995)

Annales de l'institut Fourier

Similarity:

In this paper we give a geometric characterization of the 2-dimensional foliations on compact orientable 3-manifolds defined by a locally free smooth action of 2 .

Regular projectively Anosov flows with compact leaves

Takeo Noda (2004)

Annales de l’institut Fourier

Similarity:

This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M . We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 × I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which...

Projectively Anosov flows with differentiable (un)stable foliations

Takeo Noda (2000)

Annales de l'institut Fourier

Similarity:

We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on T 2 which can be extended on a neighbourhood of T 2 into a projectively Anosov flow so that T 2 is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on T 3 . In this case, the only flows on T 2 which...