The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Note on the two congruences a x 2 + b y 2 + e 0 , a x 2 + b y 2 + c z 2 + d w 2 0 ( mod. p ) , where p is an odd prime and a ¬ 0 , b ¬ 0 , c ¬ 0 , d ¬ 0 ( mod. p )

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

A note on the congruence n p k m p k n m ( mod p r )

Romeo Meštrović (2012)

Czechoslovak Mathematical Journal

Similarity:

In the paper we discuss the following type congruences: n p k m p k m n ( mod p r ) , where p is a prime, n , m , k and r are various positive integers with n m 1 , k 1 and r 1 . Given positive integers k and r , denote by W ( k , r ) the set of all primes p such that the above congruence holds for every pair of integers n m 1 . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W ( k , r ) and inclusion relations between them for various values k and r . In particular, we prove that W ( k + i , r ) = W ( k - 1 , r ) for all k 2 , i 0 and...

Multiplicative functions and k -automatic sequences

Soroosh Yazdani (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

A sequence is called k -automatic if the n ’th term in the sequence can be generated by a finite state machine, reading n in base k as input. We show that for many multiplicative functions, the sequence ( f ( n ) mod v ) n 1 is not k -automatic. Among these multiplicative functions are γ m ( n ) , σ m ( n ) , μ ( n ) et φ ( n ) .

On a kind of generalized Lehmer problem

Rong Ma, Yulong Zhang (2012)

Czechoslovak Mathematical Journal

Similarity:

For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p , i = 1 , 2 , , m ) be of opposite parity with E 1 , E 2 , , E m respectively such that a 1 a 2 a m c ( mod p ) . Let N ( c , m , p ) = 1 2 m - 1 a 1 = 1 p - 1 a 2 = 1 p - 1 a m = 1 p - 1 a 1 a 2 a m c ( mod p ) ( 1 - ( - 1 ) a 1 + E 1 ) ( 1 - ( - 1 ) a 2 + E 2 ) ( 1 - ( - 1 ) a m + E m ) . We are interested in the mean value of the sums c = 1 p - 1 E 2 ( c , m , p ) , where E ( c , m , p ) = N ( c , m , p ) - ( ( p - 1 ) m - 1 ) / ( 2 m - 1 ) for the odd prime p and any integers m 2 . When m = 2 , c = 1 , it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.

A note on the diophantine equation x 2 + b Y = c z

Maohua Le (2006)

Czechoslovak Mathematical Journal

Similarity:

Let a , b , c , r be positive integers such that a 2 + b 2 = c r , min ( a , b , c , r ) > 1 , gcd ( a , b ) = 1 , a is even and r is odd. In this paper we prove that if b 3 ( m o d 4 ) and either b or c is an odd prime power, then the equation x 2 + b y = c z has only the positive integer solution ( x , y , z ) = ( a , 2 , r ) with min ( y , z ) > 1 .