The role of the boundary in some semilinear Neumann problems
Giovanni Mancini, Roberta Musina (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Giovanni Mancini, Roberta Musina (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
J. Chabrowski (2002)
Bollettino dell'Unione Matematica Italiana
Similarity:
In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
J. Chabrowski, Jianfu Yang (2003)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Anna Maria Candela, Monica Lazzo (1994)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
Myriam Comte, Mariette C. Knaap (1990)
Manuscripta mathematica
Similarity:
J. Chabrowski, Jianfu Yang (2001)
Colloquium Mathematicae
Similarity:
We consider the Neumann problem for an elliptic system of two equations involving the critical Sobolev nonlinearity. Our main objective is to study the effect of the coefficient of the critical Sobolev nonlinearity on the existence and nonexistence of least energy solutions. As a by-product we obtain a new weighted Sobolev inequality.
Jan Chabrowski, Kyril Tintarev (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We establish the existence of a solution to the Neumann problem in the half-space with a subcritical nonlinearity on the boundary. Solutions are obtained through the constrained minimization or minimax. The existence of solutions depends on the shape of a boundary coefficient.
Jan Chabrowski (2004)
Colloquium Mathematicae
Similarity:
We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.
Manuel del Pino, Monica Musso, Angela Pistoia (2005)
Annales de l'I.H.P. Analyse non linéaire
Similarity: