The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Inégalités de Strichartz et équations d’ondes quasilinéaires”

Solutions globales d’énergie infinie pour l’équation des ondes critique

Pierre Germain (2006-2007)

Séminaire Équations aux dérivées partielles

Similarity:

Nous considérons dans cet article l’équation des ondes semilinéaire critique ( N L W ) 2 * - 1 u + | u | 2 * - 2 u = 0 u | t = 0 = u 0 t u | t = 0 = u 1 , posée dans tout l’espace d , avec 2 * = 2 d d - 2 · Shatah et Struwe [31] ont prouvé que si les données initiales sont d’énergie finie, c’est à dire si ( u 0 , u 1 ) H ˙ 1 × L 2 , alors il existe une solution globale. Planchon [22] a montré que c’est aussi le cas pour certaines données initiales d’énergie infinie : il suffit que les données initiales soient de norme petite dans B ˙ 2 , 1 × B ˙ 2 , 0 . Nous construisons ici des solutions globales...

Problèmes mixtes hyperboliques bien-posés

Jean-François Coulombel (2004)

Journées Équations aux dérivées partielles

Similarity:

On présente une famille de problèmes mixtes hyperboliques linéaires bien-posés au sens de Hadamard. La nouveauté consiste à autoriser une perte de régularité entre les termes source et la solution. On montre ainsi que la condition de Lopatinskii faible est suffisante pour obtenir le caractère bien-posé des problèmes mixtes hyperboliques linéaires.