Sur le caractère bien posé des équations de Schrödinger non linéaires

Patrick Gérard[1]

  • [1] Université Paris–Sud, UMR 8628 du CNRS, Mathématique, Bât. 425, 91405 Orsay Cede

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 2005-2006, page 1-17

How to cite

top

Gérard, Patrick. "Sur le caractère bien posé des équations de Schrödinger non linéaires." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-17. <http://eudml.org/doc/11128>.

@article{Gérard2005-2006,
affiliation = {Université Paris–Sud, UMR 8628 du CNRS, Mathématique, Bât. 425, 91405 Orsay Cede},
author = {Gérard, Patrick},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {nonlinear Schrödinger equations; well-posedness; ill-posedness},
language = {fre},
pages = {1-17},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur le caractère bien posé des équations de Schrödinger non linéaires},
url = {http://eudml.org/doc/11128},
volume = {2005-2006},
year = {2005-2006},
}

TY - JOUR
AU - Gérard, Patrick
TI - Sur le caractère bien posé des équations de Schrödinger non linéaires
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 17
LA - fre
KW - nonlinear Schrödinger equations; well-posedness; ill-posedness
UR - http://eudml.org/doc/11128
ER -

References

top
  1. Banica, V., On the nonlinear Schrödinger dynamics on S 2 . J. Math. Pures Appl. , 83 (2004), 77–98. Zbl1084.35082MR2032582
  2. Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. Geom. and Funct. Anal., 3 (1993), 107–156. Zbl0787.35097MR1209299
  3. Bourgain, J., Exponential sums and nonlinear Schrödinger equations. Geom. and Funct. Anal., 3 (1993) 157–178. Zbl0787.35096MR1209300
  4. Bourgain, J., Global Solutions of Nonlinear Schrödinger equations. Colloq. Publications, American Math. Soc., 1999. Zbl0933.35178MR1691575
  5. Bourgain, J., Remarks on Strichartz’ inequalities on irrational tori. Prépublication, 2004, à paraître dans Mathematical Aspects of nonlinear PDE, Annals Math. Studies, Princeton. 
  6. Bourgain, J., Refinements of Strichartz’ inequality and applications to 2 D-NLS with critical nonlinearity, IMRN, 5 (1998), 253-283. Zbl0917.35126
  7. Burq, N., Gérard, P., Tzvetkov, N., Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 126 (2004), 569–605. Zbl1067.58027MR2058384
  8. Burq, N., Gérard, P., Tzvetkov, N., An instability property of the nonlinear Schrödinger equation on S d . Math. Res. Lett., 9 (2002), 323–335. Zbl1003.35113MR1909648
  9. Burq, N., Gérard, P., Tzvetkov, N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. math.159 (2005), 187–223. Zbl1092.35099MR2142336
  10. Burq, N., Gérard, P., Tzvetkov, N., Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Scient. Éc. Norm. Sup.38 (2005), 255–301. Zbl1116.35109MR2144988
  11. Burq, N., Gérard, P., Tzvetkov, N., Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds. To appear in Mathematical Aspects of nonlinear PDE, Annals Math. Studies, Princeton. Zbl1180.35475MR2333209
  12. Burq, N., Zworski, M., Instability for the semiclassical non-linear Schrödinger equation. Comm. Math. Phys.260 (2005), 45–58. Zbl1133.35089MR2175988
  13. Cazenave, T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
  14. Cazenave, T., Weissler, F., The Cauchy problem for the critical nonlinear Schrödinger equation in H s . Nonlinear Analysis, Theory, Methods and Applications, 14 (1990), 807–836. Zbl0706.35127MR1055532
  15. Christ, M., Colliander, J., Tao, T., Ill-posedness for nonlinear Schrödinger and wave equations. Prépublication, math.AP/0311048, à paraître à Ann. I. H. Poincaré-AN. 
  16. Gérard, P., Nonlinear Schrödinger equations on compact manifolds. In European Congress of Mathematics, Stokholm, June 27-July 2, 2004 (ed. by Ari Laptev). European Mathematical Society, Zürich, 2005, 121–139. Zbl1076.35115MR2185741
  17. Gérard, P., Nonlinear Schrödinger Equations in Inhomogeneous Media : Wellposedness and Illposedness of the Cauchy Problem. In Proceedings of the International Congress of Mathematics, Madrid, August 2006, à paraître. Zbl1106.35096MR2275675
  18. Ginibre, J., Velo, G., On a class of nonlinear Schrödinger equations. J. Funct. Anal., 32 (1979) 1-71. Zbl0396.35029MR533219
  19. Ginibre, J., Velo, G., The global Cauchy problem for the nonlinear Schrödinger equation. Ann. I. H. Poincaré-AN, 2 (1985) 309-327. Zbl0586.35042MR801582
  20. Ginibre, J., Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain). Séminaire Bourbaki, Exp. 796, Astérisque237 (1996), 163–187. Zbl0870.35096
  21. Kato, T., On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique théorique46 (1987), 113–129. Zbl0632.35038MR877998
  22. Keel, M., Tao, T., Endpoint Strichartz estimates. Amer. J. Math., 120 (1998), 955–980. Zbl0922.35028MR1646048
  23. Ryckman, E., Visan, M., Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equation in 1 + 4 . Prépublication, math.AP/0501462, à paraître à Amer. J. Math. Zbl1160.35067MR2288737
  24. Strichartz, R., Restrictions of Fourier transforms to quadratic surfaces and decay of soltions of wave equations. Duke Math. J.44 (1977), 705-714. Zbl0372.35001MR512086
  25. Tsutsumi, Y., L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac.30 (1987), 115–125. Zbl0638.35021MR915266
  26. Tzvetkov, N., Illposedness issues for nonlinear dispersive equations. Prépublication, September 2004. 
  27. Yajima, K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys.110 (1987), 415-426. Zbl0638.35036MR891945
  28. Zakharov, V.E., Collapse of Langmuir waves. Sov. Phys. JETP35 (1972), 980-914. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.