Comportement hydrodynamique et entropie relative des processus de sauts, de naissances et de morts
Mustapha Mourragui (1996)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mustapha Mourragui (1996)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Serge Dubuc (1971)
Annales de l'institut Fourier
Similarity:
Dans la première partie du travail, l’auteur étudie les fonctions harmoniques associées à un processus en cascade sans disparition d’individus. Il achève la caractérisation des fonctions harmoniques positives extrémales, entreprise dans deux articles précédents et il détermine le comportement asymptotique de celles-ci. Un certain nombre d’exemples de fonctions harmoniques sont décrits. La deuxième partie du travail porte sur les fonctions harmoniques positives qui sont des fonctionnelles...
Yves Dupain (1979)
Annales de l'institut Fourier
Similarity:
Soit la discrépance “à l’origine” de la suite . Nous montrons que , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.
Mohamed Bouali (2007)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
On va étudier le comportement asymptotique d’une intégrale de type intégrale de Itzykson-Zuber et on va donner une formule pour sa limite. On va obtenir ce résultat en utilisant un théorème de Poincaré et un théorème de Minlos.
Jean-Pierre Borel (1991)
Colloquium Mathematicae
Similarity:
Jacques Marion (1985)
Annales de l'institut Fourier
Similarity:
Nous étudions des sous-ensembles parfaits de dont la structure dépend d’une matrice primitive à coefficients entiers . La dimension de Hausdorff d’un tel ensemble “fractal” s’exprime en fonction de la valeur propre réelle maximale de sa matrice associée. Nous utilisons le théorème de Perron-Frobenius pour calculer la valeur exacte (qui est finie et non-nulle) de la mesure de Hausdorff de cet ensemble, et nous montrons à quelle condition (géométrique) cette valeur est maximale. ...