Displaying similar documents to “Sharp Domains of Determinacy and Hamilton-Jacobi Equations”

Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians

Eunmi Pak, Juan de Dios Pérez, Young Jin Suh (2015)

Czechoslovak Mathematical Journal

Similarity:

We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian G 2 ( m + 2 ) . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in G 2 ( m + 2 ) satisfying such conditions.

Hamilton-Jacobi flows and characterization of solutions of Aronsson equations

Petri Juutinen, Eero Saksman (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions r max y B r ( x ) u ( y ) and r min y B r ( x ) u ( y ) , respectively.

Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator

Eunmi Pak, Juan de Dios Pérez, Carlos J. G. Machado, Changhwa Woo (2015)

Czechoslovak Mathematical Journal

Similarity:

We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian G 2 ( m + 2 ) which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in G 2 ( m + 2 ) and prove non-existence of real hypersurfaces in G 2 ( m + 2 ) with generalized...

Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces

George Kyriazis, Pencho Petrushev, Yuan Xu (2008)

Studia Mathematica

Similarity:

The Littlewood-Paley theory is extended to weighted spaces of distributions on [-1,1] with Jacobi weights w ( t ) = ( 1 - t ) α ( 1 + t ) β . Almost exponentially localized polynomial elements (needlets) φ ξ , ψ ξ are constructed and, in complete analogy with the classical case on ℝⁿ, it is shown that weighted Triebel-Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients f , φ ξ in respective sequence spaces.

Hyperbolic spaces in Teichmüller spaces

Christopher J. Leininger, Saul Schleimer (2014)

Journal of the European Mathematical Society

Similarity:

We prove, for any n , that there is a closed connected orientable surface S so that the hyperbolic space n almost-isometrically embeds into the Teichmüller space of S , with quasi-convex image lying in the thick part. As a consequence, n quasi-isometrically embeds in the curve complex of S .

A generalization of Bateman's expansion and finite integrals of Sonine's and Feldheim's type

Giacomo Gigante (2010)

Colloquium Mathematicae

Similarity:

Let A k k = 0 + be a sequence of arbitrary complex numbers, let α,β > -1, let Pₙα,βn=0+∞ b e t h e J a c o b i p o l y n o m i a l s a n d d e f i n e t h e f u n c t i o n s H ( α , z ) = m = n + ( A m z m ) / ( Γ ( α + n + m + 1 ) ( m - n ) ! ) , G ( α , β , x , y ) = r , s = 0 + ( A r + s x r y s ) / ( Γ ( α + r + 1 ) Γ ( β + s + 1 ) r ! s ! ) . Then, for any non-negative integer n, 0 π / 2 G ( α , β , x ² s i n ² ϕ , y ² c o s ² ϕ ) P α , β ( c o s ² ϕ ) s i n 2 α + 1 ϕ c o s 2 β + 1 ϕ d = 1 / 2 H ( α + β + 1 , x ² + y ² ) P α , β ( ( y ² - x ² ) / ( y ² + x ² ) ) . When A k = ( - 1 / 4 ) k , this formula reduces to Bateman’s expansion for Bessel functions. For particular values of y and n one obtains generalizations of several formulas already known for Bessel functions, like Sonine’s first and second finite integrals and certain Neumann series expansions. Particular choices of A k k = 0 + allow one to write all these type of formulas...