The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the local behaviour of ordinary Λ -adic representations”

On the image of Λ -adic Galois representations

Ami Fischman (2002)

Annales de l’institut Fourier

Similarity:

We explore the question of how big the image of a Galois representation attached to a Λ -adic modular form with no complex multiplication is and show that for a “generic” set of Λ -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.

Motives over totally real fields and p -adic L -functions

Alexei A. Panchishkin (1994)

Annales de l'institut Fourier

Similarity:

Special values of certain L functions of the type L ( M , s ) are studied where M is a motive over a totally real field F with coefficients in another field T , and L ( M , s ) = 𝔭 L 𝔭 ( M , 𝒩 𝔭 - s ) is an Euler product 𝔭 running through maximal ideals of the maximal order 𝒪 F of F and L 𝔭 ( M , X ) - 1 = ( 1 - α ( 1 ) ( 𝔭 ) X ) · ( 1 - α ( 2 ) ( 𝔭 ) X ) · ... · ( 1 - α ( d ) ( 𝔭 ) X ) = 1 + A 1 ( 𝔭 ) X + ... + A d ( 𝔭 ) X d being a polynomial with coefficients in T . Using the Newton and the Hodge polygons of M one formulate a conjectural criterium for the existence of a p -adic analytic continuation of the special values....

Modularity of p -adic Galois representations via p -adic approximations

Chandrashekhar Khare (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this short note we give a new approach to proving modularity of p -adic Galois representations using a method of p -adic approximations. This recovers some of the well-known results of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with the p -adic Galois representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ramakrishna, a level raising result due to Ribet, Diamond,...