On the search of genuine p -adic modular L -functions for G L ( n ) . With a correction to: On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields

Haruzo Hida

Mémoires de la Société Mathématique de France (1996)

  • Volume: 67, page I1-VI110
  • ISSN: 0249-633X

How to cite

top

Hida, Haruzo. "On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to: On $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields." Mémoires de la Société Mathématique de France 67 (1996): I1-VI110. <http://eudml.org/doc/94919>.

@article{Hida1996,
author = {Hida, Haruzo},
journal = {Mémoires de la Société Mathématique de France},
keywords = {values of complex -functions at special points; Birch and Swinnerton-Dyer conjecture; Iwasawa module; many variable -adic -functions; many variable irreducible Galois representations; genuine -adic -functions; -adic Galois representation; -adic Hecke algebras; congruence modules; differential modules; -adic periods of motives; -adic Rankin-Selberg method; interpolating Hecke -values of CM-fields; location of singularities},
language = {eng},
pages = {I1-VI110},
publisher = {Société mathématique de France},
title = {On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to: On $p$-adic $L$-functions of $GL(2)\times \{\}GL(2)$ over totally real fields},
url = {http://eudml.org/doc/94919},
volume = {67},
year = {1996},
}

TY - JOUR
AU - Hida, Haruzo
TI - On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to: On $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields
JO - Mémoires de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 67
SP - I1
EP - VI110
LA - eng
KW - values of complex -functions at special points; Birch and Swinnerton-Dyer conjecture; Iwasawa module; many variable -adic -functions; many variable irreducible Galois representations; genuine -adic -functions; -adic Galois representation; -adic Hecke algebras; congruence modules; differential modules; -adic periods of motives; -adic Rankin-Selberg method; interpolating Hecke -values of CM-fields; location of singularities
UR - http://eudml.org/doc/94919
ER -

References

top
  1. [1] Y. André, p-adic Betti lattices, In &201C;p-adic Analysis&201D;, Lecture notes in Math. 1454 (1989), 23-63. Zbl0739.14009MR92c:14015
  2. [2] D. Blasius, A p-adic property of Hodge classes of abelian varieties, Proc. Symp. Pure Math. 55 Part 2 (1994), 293-308. Zbl0821.14028MR95j:14022
  3. [3] D. Blasius, Period relations and critical values of L-functions, preprint, 1989. 
  4. [4] D. Blasius, On the critical values of Hecke L-series, Ann. of Math. 124 (1986), 23-63. Zbl0608.10029MR88i:11035
  5. [5] D. Blasius, Appendix to Orloff Critical values of certain tensor product L-functions, Invent. Math. 90 (1987), 181-188. Zbl0625.10022MR88i:11031
  6. [6] D. Blasius and J. D. Rogawski, Motives for Hilbert modular forms, Inventiones Math. 114 (1993), 55-87. Zbl0829.11028MR94i:11033
  7. [7] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, Progress in Math. (Grothendieck Festschrift 1) 86 (1990), 333-400. Zbl0768.14001MR92g:11063
  8. [8] N. Bourbaki, Algèbre commutative, Hermann Paris, 1961-1965. 
  9. [9] H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Sup. 4-th series, 19 (1986), 409-468. Zbl0616.10025MR89c:11083
  10. [10] H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local compact, Contemporary Math. 165 (1994), 213-237. Zbl0812.11036MR95i:11059
  11. [11] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301-314. Zbl0239.10015MR49 #2558
  12. [12] P. Colmez, Résidu en s = 1 des fonctions zêta p-adiques, Inventiones Math. 91 (1988), 371-389. Zbl0651.12010MR89d:11104
  13. [13] P. Colmez, Fonctions zêta p-adiques en s = 0, J. reine angew. Math. 467 (1995), 89-107. Zbl0864.11062MR96i:11125
  14. [14] P. Colmez and L. Schneps, p-adic interpolation of special values of Hecke L-functions, Compositio Math. 82 (1992), 143-187. Zbl0777.11049MR93d:11121
  15. [15] P. Deligne, Valeurs des fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33 (1979), part 2, 313-346. Zbl0449.10022MR81d:12009
  16. [16] P. Deligne, Hodge cycles on abelian varieties, Lecture Notes in Math. 900 (1982), 9-100. Zbl0537.14006MR84m:14046
  17. [17] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. Zbl0434.12009MR81m:12019
  18. [18] P. Deligne and J.S. Milne, Tannakian categories, Lecture notes in Math. 900 (1982), 101-228. Zbl0477.14004MR84m:14046
  19. [19] K. Doi, H. Hida and H. Ishii, Discriminant of Hecke fields and the twisted adjoint L-values for GL(2), preprint, 1996. Zbl0924.11035
  20. [20] G. Faltings, Crystalline cohomology and p-adic Galois representations, Proc. JAMI inaugural Conference, supplement to Amer. J. Math. (1988), 25-80. Zbl0805.14008MR98k:14025
  21. [21] G. Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299. Zbl0764.14012MR89g:14008
  22. [22] J.-M. Fontaine, Sur certains types de représentations p-adiques du group de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529-577. Zbl0544.14016MR84d:14010
  23. [23] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Astérisque 65 (1979), 3-80. Zbl0429.14016MR82k:14046
  24. [24] J.-M. Fontaine and W. Messing, p-adic periods and p-adic étale cohomology, Contemporary Math. 67 (1987), 179-207. Zbl0632.14016MR89g:14009
  25. [25] K. Fujiwara, Deformation rings and Hecke algebras in totally real case, preprint, 1996. 
  26. [26] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup. 4-th series 11 (1978), 471-542. Zbl0406.10022MR81e:10025
  27. [27] R. Gillard, Relations monomiales entre périodes p-adiques, Invent. Math. 93 (1988), 355-381. Zbl0658.14023MR89m:11058
  28. [28] R. Greenberg, Iwasawa theory and p-adic deformations of motives, Proc. Symp. Pure Math. 55 (1994) Part 2, 193-223. Zbl0819.11046MR95i:11053
  29. [29] R. Greenberg, Iwasawa theory for p-adic representations, Adv. Studies Pure Math. 17 (1989), 97-137. Zbl0739.11045MR92c:11116
  30. [30] M. Harris, Period invariants of Hilbert modular forms I: Trilinear differential operators and L-functions, Lecture note in Math. 1447 (1990), 155-202. Zbl0716.11020MR91j:11031
  31. [31] M. Harris, L-functions of 2×2 unitary groups and factorization of periods of Hilbert modular forms, J. Amer. Math. Soc. 6 (1993), 637-719. Zbl0779.11023MR93m:11043
  32. [32] M. Harris and J. Tilouine, p-adic measures and square roots of triple product L-functions, preprint, 1994. Zbl1034.11034
  33. [33] H. Hida, Elementary Theory of L-functions and Eisenstein series, LMSST 26, Cambridge University Press, 1993. Zbl0942.11024MR94j:11044
  34. [34] H. Hida, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. 128 (1988), 295-384. Zbl0658.10034MR89m:11046
  35. [35] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv. Studies in Pure Math. 17 (1989), 139-169. Zbl0742.11026MR92f:11064
  36. [36] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 4-ème série 19 (1986), 231-273. Zbl0607.10022MR88i:11023
  37. [37] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms I, Inventiones Math. 79 (1985), 159-195; II, Ann. l'Institut Fourier 38 (1988), 1-83. Zbl0573.10020
  38. [38] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Proc. JAMI inaugural Conference, supplement to Amer. J. Math. (1988), 115-134. Zbl0782.11017MR2000e:11144
  39. [39] H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math. 110 (1988), 323-382. Zbl0645.10029MR89i:11058
  40. [40] H. Hida, Le produit de Petersson et de Rankin p-adique, Sém. Théorie des Nombres, 1988-1989, 87-102. Zbl0721.11024MR92i:11057
  41. [41] H. Hida, On p-adic L-functions of GL(2) × GL(2) over totally real fields, Ann. l'Institut Fourier 41 No.2 (1991), 311-391. Zbl0725.11025MR93b:11052
  42. [42] H. Hida, On the critical values of L-functions of GL(2) and GL(2) × GL(2), Duke Math. J. 74 (1994), 431-529. Zbl0838.11036MR98f:11043
  43. [43] H. Hida, Congruences of cusp forms and special values of their zeta functions, Inventiones Math. 63 (1981), 225-261. Zbl0459.10018MR82g:10044
  44. [44] H. Hida, Galois representations into GL2 (ℤp[[X]]) attached to ordinary cusp forms, Inventiones Math. 85 (1986), 545-613. Zbl0612.10021MR87k:11049
  45. [45] H. Hida, On Selmer groups of adjoint modular Galois representations, Number Theory, Paris, LMS lecture notes series, 1996. Zbl0924.11090MR2000b:11061
  46. [46] H. Hida, Non-critical values of adjoint L-functions for SL(2), preprint, 1997. 
  47. [47] H. Hida and J. Tilouine, Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Scient. Ec. Norm. Sup. 26 (1993), 189-259. Zbl0778.11061MR93m:11044
  48. [48] H. Hida and J. Tilouine, On the anticyclotomic main conjecture for CM fields, Inventiones Math. 117 (1994), 89-147. Zbl0819.11047MR95d:11149
  49. [49] H. Hida, J. Tilouine, and E. Urban, Adjoint modular Galois representations and their Selmer groups, Proc. NAS. 1997 Zbl0909.11025MR98m:11034
  50. [50] Luc Illusie, Cohomologie de de Rham et cohomologie étale p-adique, Séminaire Bourbaki, 1989-1990 no. 726 Zbl0736.14005
  51. [51] H. Jacquet, Automorphic forms on GL(2), II, Lecture notes in Math. 278, Springer, 1972 Zbl0243.12005MR58 #27778
  52. [52] N. M. Katz, p-adic L-functions for CM fields, Inventiones Math. 49 (1978), 199-297 Zbl0417.12003MR80h:10039
  53. [53] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, Contemporary Math. 165 (1994), 81-110 Zbl0841.11028MR95f:11031
  54. [54] B. Mazur, Deforming Galois representations, in "Galois group over ℚ", MSRI publications 16, (1989), 385-437 Zbl0714.11076MR90k:11057
  55. [55] B. Mazur and J. Tilouine, Représentations Galoisiennes, différentielles de Kähler et "conjectures principales", Publ. IHES 71 (1990), 65-103 Zbl0744.11053MR92e:11060
  56. [56] A. A. Panchishkin, Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math. 55 Part 2 (1994), 251-292 Zbl0837.11029MR95j:11043
  57. [57] A. A. Panchishkin, Produits triples des formes modulaires et leur interpolation p-adique par la méthode d'Amice-Vélu, preprint 1993 
  58. [58] B. Perrin-Riou, Fonction L p-adiques des représentations p-adiques, Astérisque 229 (1995) Zbl0845.11040
  59. [59] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Adv. Studies Pure Math. 17 (1989), 347-358 Zbl0747.11056MR93c:11096
  60. [60] B. Perrin-Riou, Représentations p-adiques, périodes et fonctions L p-adiques, Séminaire de théorie des nombres, Paris (1987-1988), 213-258 Zbl0783.11044MR91k:11109
  61. [61] J.-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, 1968 Zbl0186.25701MR41 #8422
  62. [62] J.-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 155-188 Zbl0446.20028MR81j:14027
  63. [63] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, Proc. Symp. Pure Math. 55, Part 1, 377-400 Zbl0812.14002MR95m:11059
  64. [64] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami-Shoten and Princeton Univ. Press, 1971 Zbl0221.10029
  65. [65] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679 Zbl0394.10015MR80a:10043
  66. [66] G. Shimura, On the critical values of certain Dirichlet series and the periods of automorphic forms, Inventiones Math. 94 (1988), 245-305 Zbl0656.10018MR90e:11069
  67. [67] G. Shimura, On the fundamental periods of automorphic forms of arithmetic type, Inventiones Math. 102 (1990), 399-428 Zbl0712.11028MR91k:11041
  68. [68] J. Tate, p-Divisible groups, Proc. of Conference on local fields, Driebergen 1966, 158-183 Zbl0157.27601MR38 #155
  69. [69] R. Taylor, On Galois representations associated to Hilbert modular forms, Inventiones Math. 98 (1989), 265-280 Zbl0705.11031MR90m:11176
  70. [70] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke modules, Ann. of Math. 142 (1995), 553-572 Zbl0823.11030MR96d:11072
  71. [71] J. Tilouine, Sur la conjecture principale anticyclotomique, Duke. Math. J. 59 (1989), 629-673 Zbl0707.11079MR91b:11118
  72. [72] J. Tilouine, Deformation of Galois representations and Hecke algebras, Publ. Mehta Res. Inst., Narosa Publ., Delhi, 1996 Zbl1009.11033
  73. [73] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 142 (1995), 443-551 Zbl0823.11029MR96d:11071
  74. [74] H. Yoshida, On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J. 75 (1994), 121-191 Zbl0823.11018MR95d:11059
  75. [75] H. Yoshida, On a conjecture of Shimura concerning periods of Hilbert modular forms, Amer. J. Math. 117 (1995), 1019-1038 Zbl0841.11024MR96d:11056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.