Displaying similar documents to “NP-completeness results for minimum planar spanners.”

The list linear arboricity of planar graphs

Xinhui An, Baoyindureng Wu (2009)

Discussiones Mathematicae Graph Theory

Similarity:

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ {3,4,5}. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9. ...

A new proof of the four-colour theorem.

Robertson, Neil, Sanders, Daniel P., Seymour, Paul, Thomas, Robin (1996)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Similarity:

Planar Ramsey numbers

Izolda Gorgol (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.

On properties of maximal 1-planar graphs

Dávid Hudák, Tomáš Madaras, Yusuke Suzuki (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.

On An Extremal Problem In The Class Of Bipartite 1-Planar Graphs

Július Czap, Jakub Przybyło, Erika Škrabuľáková (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G = (V, E) is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite 1-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs are known to have at most 3n − 8 edges, where n denotes the order of a graph. We show that maximal-size bipartite 1-planar graphs which are almost balanced have not significantly fewer edges than indicated by this upper bound, while the same...

Partitioning a planar graph without chordal 5-cycles into two forests

Yang Wang, Weifan Wang, Jiangxu Kong, Yiqiao Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.