The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Singular fibers of stable maps and signatures of 4-manifolds.”

The cobordism of Real manifolds

Po Hu (1999)

Fundamenta Mathematicae

Similarity:

We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.

Lefschetz coincidence formula on non-orientable manifolds

Daciberg Gonçalves, Jerzy Jezierski (1997)

Fundamenta Mathematicae

Similarity:

We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.

A Lefschetz-type coincidence theorem

Peter Saveliev (1999)

Fundamenta Mathematicae

Similarity:

A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: I f g = λ f g , that is, the coincidence index is equal to the Lefschetz number. It follows that if λ f g 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like”...

Linear orders and MA + ¬wKH

Zoran Spasojević (1995)

Fundamenta Mathematicae

Similarity:

I prove that the statement that “every linear order of size 2 ω can be embedded in ( ω ω , ) ” is consistent with MA + ¬ wKH.

Minor cycles for interval maps

Michał Misiurewicz (1994)

Fundamenta Mathematicae

Similarity:

For continuous maps of an interval into itself we consider cycles (periodic orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks of consecutive points permuted by the map. Among them we identify the miror ones. They are those whose existence does not imply existence of other non-reducible cycles of the same period. Moreover, we find minor patterns of a given period with minimal entropy.