Relatively inexact proximal point algorithm and linear convergence analysis.
Verma, Ram U. (2009)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Verma, Ram U. (2009)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ram Verma (2007)
Open Mathematics
Similarity:
Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.
P. Mahey, Pham Dinh Tao (1993)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Regina S. Burachik, Alfredo N. Iusem (1999)
RAIRO - Operations Research - Recherche Opérationnelle
Similarity:
Brohe, M., Tossings, P. (2000)
Serdica Mathematical Journal
Similarity:
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of...
Aleksandr N. Antamoshkin, V. N. Saraev, Evgeniĭ Semënkin (1990)
Kybernetika
Similarity:
S. Fitzpatrick, R. R. Phelps (1992)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
A. Renaud, G. Cohen (1997)
ESAIM: Control, Optimisation and Calculus of Variations
Similarity: