Displaying similar documents to “Selfinjective algebras of polynomial growth.”

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

Similarity:

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Tame three-partite subamalgams of tiled orders of polynomial growth

Daniel Simson (1999)

Colloquium Mathematicae

Similarity:

Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders Λ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order Λ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders Λ of non-polynomial growth are completely described in Theorem...

Polynomial algebra of constants of the Lotka-Volterra system

Jean Moulin Ollagnier, Andrzej Nowicki (1999)

Colloquium Mathematicae

Similarity:

Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form d = x ( C y + z ) x + y ( A z + x ) y + z ( B x + y ) z , called the Lotka-Volterra derivation, where A,B,C ∈ k.

On two tame algebras with super-decomposable pure-injective modules

Stanisław Kasjan, Grzegorz Pastuszak (2011)

Colloquium Mathematicae

Similarity:

Let k be a field of characteristic different from 2. We consider two important tame non-polynomial growth algebras: the incidence k-algebra of the garland 𝒢₃ of length 3 and the incidence k-algebra of the enlargement of the Nazarova-Zavadskij poset 𝒩 𝓩 by a greatest element. We show that if Λ is one of these algebras, then there exists a special family of pointed Λ-modules, called an independent pair of dense chains of pointed modules. Hence, by a result of Ziegler, Λ admits a super-decomposable...