Displaying similar documents to “Gorenstein injective and projective modules.”

Strongly 𝒲 -Gorenstein modules

Husheng Qiao, Zongyang Xie (2013)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒲 be a self-orthogonal class of left R -modules. We introduce a class of modules, which is called strongly 𝒲 -Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly 𝒲 -Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly 𝒲 -Gorenstein module can be inherited by its submodules and quotient...

The existence of relative pure injective envelopes

Fatemeh Zareh-Khoshchehreh, Kamran Divaani-Aazar (2013)

Colloquium Mathematicae

Similarity:

Let 𝓢 be a class of finitely presented R-modules such that R∈ 𝓢 and 𝓢 has a subset 𝓢* with the property that for any U∈ 𝓢 there is a U*∈ 𝓢* with U* ≅ U. We show that the class of 𝓢-pure injective R-modules is preenveloping. As an application, we deduce that the left global 𝓢-pure projective dimension of R is equal to its left global 𝓢-pure injective dimension. As our main result, we prove that, in fact, the class of 𝓢-pure injective R-modules is enveloping.

Limits of tilting modules

Clezio A. Braga, Flávio U. Coelho (2009)

Colloquium Mathematicae

Similarity:

We study the problem of when a direct limit of tilting modules is still a tilting module.

Some remarks on Prüfer modules

S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.