Displaying similar documents to “On the localization of the vortices”

One-dimensional symmetry for solutions of quasilinear equations in R 2

Alberto Farina (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider two-dimensional quasilinear equations of the form div a u u + f u = 0 and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of u (notice that arg u is a well-defined real function since u > 0 on R 2 ) we prove that u is one-dimensional, i.e., u = u ν x for some unit vector ν . As a consequence of our result we obtain that any solution u having one positive derivative is one-dimensional. This result provides...

Global existence and regularity of solutions for complex Ginzburg-Landau equations

Stéphane Descombes, Mohand Moussaoui (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Si considerano equazioni di Ginzburg-Landau complesse del tipo u t - α Δ u + P u 2 u = 0 in R N dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva α . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso α < C α , dove C dipende da K e N .

Γ -convergence of constrained Dirichlet functionals

Gian Paolo Leonardi (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

Given an open, bounded and connected set Ω R n with Lipschitz boundary and volume Ω , we prove that the sequence F k of Dirichlet functionals defined on H 1 Ω ; R d , with volume constraints v k on m 2 fixed level-sets, and such that i = 1 m v i k < Ω for all k , Γ -converges, as v k v with i = 1 m v i k = Ω , to the squared total variation on B V V ; R d , with v as volume constraint on the same level-sets.

Existence and boundedness of minimizers of a class of integral functionals

A. Mercaldo (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type f ( x , η , ξ ) a ( x ) | ξ | p ( 1 + | η | ) α - b 1 ( x ) | η | β 1 - g 1 ( x ) , f ( x , η , 0 ) b 2 ( x ) | η | β 2 + g 2 ( x ) , where 0 α < p , 1 β 1 < p , 0 β 2 < p , α + β i p , a x , b i x , g i x ( i = 1 , 2 ) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space W 1 , p a , which assume a boundary datum u 0 W 1 , p a L Ω .