Displaying similar documents to “Arithmetics in numeration systems with negative quadratic base”

Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We study the complexity of the infinite word u β associated with the Rényi expansion of 1 in an irrational base β > 1 . When β is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity ( n ) = n + 1 . For β such that d β ( 1 ) = t 1 t 2 t m is finite we provide a simple description of the structure of special factors of the word u β . When t m = 1 we show that ( n ) = ( m - 1 ) n + 1 . In the cases when t 1 = t 2 = = t m - 1 or t 1 > max { t 2 , , t m - 1 } we show that the first difference of the complexity function ( n + 1 ) - ( n ) takes value in { m - 1 , m } for every n , and consequently...

Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers

Lubomíra Balková, Edita Pelantová, Ondřej Turek (2007)

RAIRO - Theoretical Informatics and Applications

Similarity:

We study some arithmetical and combinatorial properties of -integers for being the larger root of the equation . We determine with the accuracy of 1 the maximal number of -fractional positions, which may arise as a result of addition of two -integers. For the infinite word coding distances between the consecutive -integers, we determine precisely also the balance. The word is the only fixed point of the morphism → and → . In the case , the corresponding infinite word is sturmian,...

A note on univoque self-sturmian numbers

Jean-Paul Allouche (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number β in ( 1 , 2 ) is univoque and self-sturmian if and only if the β -expansion of 1 is of the form 1 v , where v is a characteristic...

Substitution invariant sturmian bisequences

Bruno Parvaix (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

We prove that a Sturmian bisequence, with slope α and intercept ρ , is fixed by some non-trivial substitution if and only if α is a Sturm number and ρ belongs to ( α ) . We also detail a complementary system of integers connected with Beatty bisequences.

Linear recurrence sequences without zeros

Artūras Dubickas, Aivaras Novikas (2014)

Czechoslovak Mathematical Journal

Similarity:

Let a d - 1 , , a 0 , where d and a 0 0 , and let X = ( x n ) n = 1 be a sequence of integers given by the linear recurrence x n + d = a d - 1 x n + d - 1 + + a 0 x n for n = 1 , 2 , 3 , . We show that there are a prime number p and d integers x 1 , , x d such that no element of the sequence X = ( x n ) n = 1 defined by the above linear recurrence is divisible by p . Furthermore, for any nonnegative integer s there is a prime number p 3 and d integers x 1 , , x d such that every element of the sequence X = ( x n ) n = 1 defined as above modulo p belongs to the set { s + 1 , s + 2 , , p - s - 1 } .

Imbalances in Arnoux-Rauzy sequences

Julien Cassaigne, Sébastien Ferenczi, Luca Q. Zamboni (2000)

Annales de l'institut Fourier

Similarity:

In a 1982 paper Rauzy showed that the subshift ( X , T ) generated by the morphism 1 12 , 2 13 and 3 1 is a natural coding of a rotation on the two-dimensional torus 𝕋 2 , i.e., is measure-theoretically conjugate to an exchange of three fractal domains on a compact set in 2 , each domain being translated by the same vector modulo a lattice. It was believed more generally that each sequence of block complexity 2 n + 1 satisfying a combinatorial criterion known as the condition of Arnoux and Rauzy codes the orbit...