The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes”

On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Pascal Omnes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the  norm,...

Analysis of an Asymptotic Preserving Scheme for Relaxation Systems

Francis Filbet, Amélie Rambaud (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet and S. Jin [229 (2010)] and G. Dimarco and L. Pareschi [49 (2011) 2057–2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a convergence analysis of such a scheme for the approximation of a system of transport equations with a nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate the convergence of the approximate solution ( ...

Optimal convergence rates of mortar finite element methods for second-order elliptic problems

Faker Ben Belgacem, Padmanabhan Seshaiyer, Manil Suri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present an improved, near-optimal error estimate for a non-conforming finite element method, called the mortar method (M0). We also present a new mortaring technique, called the mortar method (MP), and derive , and error estimates for it, in the presence of quasiuniform and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we present, show that like (M0), (MP) is also a viable mortaring technique for the method.

Error Control and Andaptivity for a Phase Relaxation Model

Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The phase relaxation model is a diffuse interface model with small parameter which consists of a parabolic PDE for temperature and an ODE with double obstacles for phase variable . To decouple the system a semi-explicit Euler method with variable step-size is used for time discretization, which requires the stability constraint . Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter are further employed for space discretization. error estimates...

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)

Thomas Apel, Ariel L. Lombardi, Max Winkler (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the ()- and ()-norms by using a new quasi-interpolation...

A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations

Irene Kyza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We prove error estimates of optimal order for linear Schrödinger-type equations in the ( )- and the ( )-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis in [ 75 (2006) 511–531], leads to upper bounds that are of optimal order in the ( )-norm, but of suboptimal order in the ( ...