The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The divisor function d 3 ( n ) in arithmetic progressions”

The ternary Goldbach problem in arithmetic progressions

Jianya Liu, Tao Zhan (1997)

Acta Arithmetica

Similarity:

For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and ( N , r ) = b ³ : 1 b j r , ( b j , r ) = 1 a n d b + b + b N ( m o d r ) . It is known that    ( N , r ) = r ² p | r p | N ( ( p - 1 ) ( p - 2 ) / p ² ) p | r p N ( ( p ² - 3 p + 3 ) / p ² ) . Let ε > 0 be arbitrary and R = N 1 / 8 - ε . We prove that for all positive integers r ≤ R, with at most O ( R l o g - A N ) exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ p j b j ( m o d r ) , j = 1,2,3, ⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.

On normal lattice configurations and simultaneously normal numbers

Mordechay B. Levin (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Let q , q 1 , , q s 2 be integers, and let α 1 , α 2 , be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence ( α m q n , , α m + s - 1 q n ) m , n = 1 M N coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences ( x n ) n = 1 M N in s -dimensional unit cube ( s , M , N = 1 , 2 , ) . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence ( α 1 q 1 n , , α s q s n ) n = 1 N (Korobov’s problem).

A short intervals result for linear equations in two prime variables.

M. B. S. Laporta (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).