The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Arithmetic progressions in sumsets”

On a problem of Matkowski

Zoltán Daróczy, Gyula Maksa (1999)

Colloquium Mathematicae

Similarity:

We solve Matkowski's problem for strictly comparable quasi-arithmetic means.

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

Large sets with small doubling modulo p are well covered by an arithmetic progression

Oriol Serra, Gilles Zémor (2009)

Annales de l’institut Fourier

Similarity:

We prove that there is a small but fixed positive integer ϵ such that for every prime p larger than a fixed integer, every subset S of the integers modulo p which satisfies | 2 S | ( 2 + ϵ ) | S | and 2 ( | 2 S | ) - 2 | S | + 3 p is contained in an arithmetic progression of length | 2 S | - | S | + 1 . This is the first result of this nature which places no unnecessary restrictions on the size of S .