Remarques sur les idéaux de polynômes et de formes différentielles extérieures I
Bruno Bigolin (1996)
Banach Center Publications
Similarity:
Bruno Bigolin (1996)
Banach Center Publications
Similarity:
Isabelle Bonnard-Doré (2004)
Revista Matemática Complutense
Similarity:
In this paper we consider the following question: Let S be a semialgebraic subset of a real algebraic set V, and let φ: S → Z be a function on S. Is φ the restriction of an algebraically constructible function on V, i.e. a sum of signs of polynomials on V? We give an effective method to answer this question when φ(S) ⊂ {-1,1} or dim S ≤ 2 or S is basic.
Torossian, Charles (2005)
Journal of Lie Theory
Similarity:
Jean Bourguignon (1992)
Banach Center Publications
Similarity:
Daniel Lehmann (1998)
Banach Center Publications
Similarity:
Azzouz Awane, Mohamed Belam, Sadik Fikri, Mohammed Lahmouz, Bouchra Naanani (2002)
Revista Matemática Complutense
Similarity:
We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.
Christine Laurent-Thiebaut (1995)
Banach Center Publications
Similarity:
J. Tougeron (1996)
Banach Center Publications
Similarity:
Mary Teuw Niane, Abdoulaye Sene (2002)
Revista Matemática Complutense
Similarity:
We define, for the trace of solution of vibrating plates equation, norms with initial conditions in no regular spaces. Then, we give the corresponding exact controllability results.
Jean-Pierre Dedieu (2010)
Les cours du CIRM
Similarity:
Roland Uhl (1995)
Annales Polonici Mathematici
Similarity:
Résumé. On présente une fonction continue f: c₀ → c₀ qui satisfait à une condition lipschitzienne par rapport à la mesure de non-compacité de Hausdorff (ou Kuratowski), mais telle que f n'est pas la somme d'une fonction dissipative et d'une fonction compacte. Cet exemple attache de l'importance au théorème d'existence de Sabina Schmidt (1989) pour des équations différentielles dans les espaces de Banach.