Displaying similar documents to “Classification of relative minima singularities”

Topological triviality of versal unfoldings of complete intersections

James Damon (1984)

Annales de l'institut Fourier

Similarity:

We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in C 4 which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities. The algebraic conditions are related to the...

The jump of the Milnor number in the X 9 singularity class

Szymon Brzostowski, Tadeusz Krasiński (2014)

Open Mathematics

Similarity:

The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.

Real algebraic threefolds I. Terminal singularities.

János Kollár (1998)

Collectanea Mathematica

Similarity:

The aim of this series of papers is to develop the theory of minimal models for real algebraic threefolds. The ultimate aim is to understand the topology of the set of real points of real algebraic threefolds. We pay special attention to 3–folds which are birational to projective space and, more generally, to 3–folds of Kodaira dimension minus infinity.present work contains the beginning steps of this program. First we classify 3–dimensional terminal singularities over any field of characteristic...